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Abstract: We study the operator product expansion (OPE) limit of correlation functions

in field theories which possess string theory duals, from the point of view of the string

worldsheet. We show how the interesting (“single-trace”) terms in the OPE of the field

theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a

dominant saddle point which appears in computations of worldsheet correlation functions

in the space-time OPE limit. The worldsheet OPE generically contains only non-physical

operators, but all the non-physical contributions are resummed by the saddle point to a

contribution similar to that of a physical operator, which exactly matches the field theory

expectations. We verify that the OPE limit of the worldsheet theory does not have any

other contributions to the OPE limit of space-time correlation functions. Our discussion is

completely general and applies to any local field theory (conformal at high energies) that

has a weakly coupled string theory dual (with arbitrary curvature). As a first application,

we compare our results to a proposal of R. Gopakumar for the string theory dual of free

gauge theories.
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1. Introduction and summary

When some field theory (such as a large N gauge theory) has a string theory dual [1, 2], this

dual should exhibit all aspects of the field theory. In particular, a basic feature of any local

field theory is the existence of an operator product expansion (OPE) when two operators

approach each other (in Euclidean space), expressing the product of two nearby operators

in terms of a sum of local operators, and it is interesting to ask how this is realized in the

string theory dual. We will focus here on specific terms in this OPE, which are “single-

trace” terms in the language of large N gauge theories. We will see that these terms arise

from the OPE limit of the worldsheet correlation functions of the dual string theory. In fact,

each term corresponding to some operator in the space-time OPE expansion is reproduced

by a saddle point in the worldsheet computation, which occurs when the distance between

the two operators on the worldsheet is proportional to the space-time distance between

the two operators, raised to some power (depending on the operator). Our discussion will

be limited to tree-level closed string theory, but it applies to any field theory which is

dual to a closed string theory in some background (with arbitrary curvature). It would be

interesting to generalize our discussion to higher genus (namely, higher orders in 1/N when

the field theory is a large N gauge theory). It would also be interesting (and presumably

straightforward) to generalize our results to theories with open strings.

Of course, in most of the interesting cases of string theory duals of four dimensional

large N gauge theories, such as the large N limit of QCD, we do not yet know the worldsheet

action well enough to analyze it in detail. However, it turns out that general properties,

following just from the existence of such a worldsheet, are sufficient to give a precise

worldsheet description of the space-time OPE. Cases where the worldsheet theory is under

control, for instance string theory on AdS3×W with NS-NS 3-form flux, and string theory

on weakly curved AdSd+1 × W spaces with Ramond-Ramond flux, arise as special cases
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of our general description. In the AdS3 case we can make contact with previously known

results [3], and obtain a new perspective on these results.

For simplicity, we will analyze only the case of conformal field theories, which are dual

to string theories on anti-de Sitter (AdS) spaces; since the OPE is a short-distance property,

this analysis should be relevant to any local field theory which is conformal at high energies.

It would be interesting to generalize our results to asymptotically free gauge theories, where

there are logarithmic corrections to the OPE. Our analysis seems to depend strongly on the

fact that the string theory duals of conformal field theories have a continuum of off-shell

modes, and it would be interesting to understand if this is true also for the string duals of

asymptotically free theories or not [4].

We should clarify the relation of this work to previous works on similar issues. There

are many computations of correlation functions in field theories dual to string theory on AdS

space (in particular, AdS5 × S5) in the supergravity approximation. These computations

allow the study of the OPE limit of these supergravity correlators, and its matching with

the field theory expectations; for example, see [5] and references therein. There is no direct

relation between our results and these studies; we focus on the worldsheet description

rather than the bulk space-time description. Of course, in the special cases where the

string theory has a supergravity approximation, our results are consistent with the bulk

space-time computations, but our point of view is completely different.

The saddle point that we find in the integral over the moduli space in the computation

of the worldsheet correlation functions is somewhat similar to the saddle point found in [6]

for high-energy scattering. However, in that case the saddle point is in the bulk of the

worldsheet moduli space (even in the extreme high-energy limit), while in our case the

position of the saddle point scales with the small separation of the operators in the field

theory. Since our saddle point is associated with an OPE, it depends only on the properties

of the two operators involved and not on any other operators, while the saddle point of [6]

depends on all the vertex operators.

Finally, in the series of papers [7, 8, 4], a systematic study was performed of various

kinematical limits in gauge theories, relating them with the behavior in the dual string

theory. Our study is very much in the same spirit and has, in particular, a close relation to

the work [8] on deep inelastic scattering.1 However, the methods we use are quite different.

This paper is organized as follows. In §2 we show how a worldsheet computation

(using the worldsheet OPE) reproduces the expected terms in the space-time OPE (the

ones involving “single-trace” operators). We show that these terms arise from a saddle

point, and that there are no perturbative corrections to the saddle point approximation.

In §3 we analyze various discrete contributions which appear in the computation, and we

show that in general they are not associated with the space-time OPE. As an application

of our results, in §4 we compare our general results to the OPE limit in a proposal of [9]

for the string theory dual of free gauge theories.

1In the physical region of deep inelastic scattering (DIS) the momentum fraction x satisfies 0 ≤ x ≤ 1,

which is not the OPE region. However, OPE techniques are very useful in analyzing DIS, since they provide

moments of the structure functions. This follows by a standard contour argument connecting the strict

OPE limit (x ≫ 1) with the physical region.
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2. The string theory dual of the space-time OPE

2.1 The general problem

Consider the Euclidean background of string theory on AdSd+1 × W , which is related by

the AdS/CFT correspondence [2] to a conformal field theory (CFT) in d dimensions.2

The conformal theory lives on R
d or on Sd (the two cases are related by a conformal

transformation), and we will denote its coordinates by ~x. The worldsheet theory describing

strings on AdSd+1 × W is not tractable in the general case when Ramond-Ramond (RR)

backgrounds are turned on, but it certainly exists, for example, in the Green-Schwarz or

pure spinor formalisms.

The basic observables in the space-time CFT are correlation functions of local operators

Ôi(~x). Each such operator sits in some representation of the space-time conformal algebra

SO(d + 1, 1). For simplicity we will discuss here only scalar operators which are primaries

of the conformal algebra; the generalization to other operators is straightforward. Such

operators are characterized by a space-time scaling dimension, which we will denote by 2j

(We reserve the notation ∆ for worldsheet scaling dimensions; this convention agrees with

the standard convention for strings in AdS3.), and in general also by additional quantum

numbers, which we will denote collectively by h. In CFTs which are dual to weakly coupled

string theories (with arbitrary curvature), there is a special class of operators which create

states which are dual to single-string states; for large N gauge theories these are the “single-

trace” operators (and we will use this name for them also more generally). For simplicity, we

will limit our discussion to such operators. The duality maps these operators to integrated

vertex operators on the worldsheet (We will discuss here only tree-level diagrams for which

the worldsheet is a sphere.). This is written schematically as

Ôj,h(~x) =

∫

d2z Oj,h(~x; z, z̄). (2.1)

The OPE of two “single-trace” operators contains both other “single-trace” operators and

“multi-trace” operators. On general grounds involving the form of the ’t Hooft expan-

sion [1] we would expect the “single-trace” terms in the space-time OPE to arise locally

on the worldsheet, from the limit where the two operators approach each other also in

their worldsheet (z) coordinates, while other terms in the space-time OPE should not arise

locally.

The space-time OPE of conformal primary operators is highly constrained by the

conformal group SO(d + 1, 1): it takes the form, as ~x′ → ~x,

Ôj1,h1(~x
′)Ôj2,h2(~x) ∼

∑

j,h

C(j1, j2, j; h1, h2, h)

(|~x′ − ~x|2)(j1+j2−j)
Ôj,h(~x) + · · · , (2.2)

where the dots denote descendants of the space-time conformal algebra. The coefficients

C are determined by the 3-point functions and the 2-point functions. Using the OPE, one

2Here and elsewhere, we use the notation of a direct product although our analysis includes also cases

where the AdSd+1 is non-trivially fibered over the base W .
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can relate a limit of n-point functions in the space-time CFT (with n > 3) to (n− 1)-point

functions. To make the notations less cluttered, we will replace the quantum numbers

{ji, hi} simply by i.

The field theory/string theory duality allows us to compute n-point functions in the

space-time CFT via n-point functions of integrated vertex operators on the corresponding

worldsheet. For convenience, we can fix one of the operators in space-time to be at ~x = 0.3

We will take one of the other operators to be at ~x, and study the limit ~x → 0. The n-point

function in the space-time CFT (with n > 3) is given by

<Ô1(~x)Ô2(0)
n−4
∏

i=1

Ôi+2(~xi+2)Ôn−1(~xn−1)Ôn(~xn)>=

=

∫

d2z

〈

O1(~x; z, z̄)c̄cO2(0; 0)

(

n−4
∏

i=1

∫

d2wiOi+2(~xi+2; wi)

)

c̄cOn−1(~xn−1; 1)c̄cOn(~xn;∞)

〉

≡
∫

d2z 〈O1(~x; z, z̄)c̄cO2(0; 0)X〉 , (2.3)

where X is an abbreviation for all the other operators; we integrate over all possible

worldsheets with the correct insertions. The worldsheet distance between the two insertions

which correspond to the space-time operators which are separated by ~x is denoted by z,

see figure 1. We have used the worldsheet conformal symmetry to fix three of the vertex

operators at z = 0, 1,∞, and the usual ghost insertions take care of the ghost number

anomaly. The prescription (2.3) computes only the connected planar diagrams in the

space-time CFT.

The worldsheet vertex operators appearing in (2.1) are always physical vertex oper-

ators; they are level-matched Virasoro primaries with total worldsheet scaling dimension

∆ = 2. However, the worldsheet OPE of such operators generally contains unphysical

operators on the worldsheet, corresponding to “off-shell modes” in AdS space (just like

in the worldsheet OPE of string theory in flat space). In AdS space, fields may be taken

off-shell by changing their momentum in the radial direction, or, equivalently, by changing

the representation of the space-time conformal algebra which they sit in. These repre-

sentations are labeled by the space-time scaling dimension j. The space-time operators

discussed above sit in representations of the conformal algebra with j ≥ d/4,4 which map

to non-normalizable modes in AdS space. The other unitary representations of the space-

time conformal algebra have j = d/4 + is with real s, and correspond to (delta-function)

normalizable modes in AdS, with some radial momentum. In general we expect to find

in the worldsheet OPE “off-shell modes” which have a form similar to the physical vertex

operators, but with other values of j which correspond to unitary representations. We will

denote these off-shell modes by the same notation Oj,h, noting that for given quantum

numbers h the operator is only physical for a specific value of j, and we will denote their

worldsheet scaling dimension by

∆(Oj,h) ≡ 2∆(j, h). (2.4)

3We can do more using the conformal symmetry, but we will not need this.
4The case of (d − 2)/4 ≤ j < d/4 can also be dealt with but it is more complicated [10, 11].
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x4
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w1

1

∞

z 0

Figure 1: Two space-time operators are separated by x, which is taken to be very small compared

to the other space-time distances. The corresponding worldsheet insertions are separated by the

modulus z, which is integrated over. The figure is a schematic drawing of the string worldsheets

contributing to the Euclidean 5-point function (2.3). The result we will find is that for each term in

the OPE the moduli space integral is dominated by a saddle point with z proportional to x raised

to some positive power. Hence, z is small, in accordance with our geometrical intuition.

The existence of such off-shell modes (with any value of j) is obvious when the worldsheet

theory factorizes as a direct product of conformal field theories AdSd+1×W , but we expect

them to exist also in other cases (such as AdS5 × S5).

Note that the Hilbert space of the worldsheet theory includes only the (delta-function)

normalizable vertex operators,5 with j = d/4 + is, so naively one would think that only

these operators appear in the worldsheet OPE. In particular, the vertex operators on the

worldsheet which correspond to local operators in space-time through the mapping (2.1)

are not part of the Hilbert space of the worldsheet theory. On the other hand, these

non-normalizable operators should appear somehow in the worldsheet OPE in order to

reproduce the space-time OPE (2.2). This is the main puzzle we would like to solve, by an-

alyzing the space-time OPE limit of (2.3) (More precisely, we will analyze the contribution

to this limit from the worldsheet OPE region.).

Before we begin, let us give a couple of examples of our general statements. String

5This is a general property of holographic backgrounds; the local operators in space-time do not corre-

spond to normalizable states of the worldsheet theory. This phenomenon was noted already in Liouville

theory [12], and another example is AdS3 [13 – 18].
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theory on AdS3 with NS-NS 3-form flux is described for any value of the curvature by a

WZW coset model SL(2, C)/ SU(2). In this case, the scaling dimensions and the spectrum

of primary operators are known exactly [13 – 18], and are given by

∆(j, h) =
j(1 − j)

k − 2
+ h0, (2.5)

where k is the level of SL(2) (For large k this is the same as the radius squared of AdS3 in

string units.) and h0 is the scaling dimension of the operator in the other components of

the worldsheet CFT.

Another tractable case is weakly curved AdSd+1 × W backgrounds. As long as these

backgrounds are weakly curved, the worldsheet dimensions of scalar primary operators are

given by the space-time Laplacian (in units of the string scale). Hence, for this case,

∆(j, h) =
j(d/2 − j)

R2
AdS

+ h0, (2.6)

where h0 is now the contribution from the Laplacian on W .

Note that the worldsheet scaling dimensions are real for all values of j corresponding

to unitary representations of the conformal group. In both examples described above the

worldsheet scaling dimensions become increasingly negative for large j (going to −∞ as

j → +∞), and increasingly positive for large |s| in j = d/4+ is (going to +∞ as |s| → ∞),

and their first and second derivatives with respect to j are negative for any j > d/4. We

will assume that these properties are true also more generally, for any string theory on AdS

space, since (as we will see below) they are necessary in order to reproduce correctly the

space-time OPE.

2.2 The worldsheet OPE and its relation to the space-time OPE

In general we do not know how to compute (2.3), but we can compute it in the limit of small

|z| using the worldsheet OPE; as discussed above, this limit is expected to give the “single-

trace” terms in the space-time OPE. In a general string theory on AdS space it is not known

how to directly compute the worldsheet OPE of the non-normalizable vertex operators that

we are interested in. However, the worldsheet OPE of normalizable vertex operators (with

j = d/4 + is) is expected to include only other normalizable vertex operators (which span

the Hilbert space of the worldsheet CFT), with coefficients determined by the 3-point

functions. The worldsheet OPE thus includes an integral over the contour j = d/4 + is,

which we will denote by C. We can then determine the OPE for the non-normalizable

vertex operators by (careful) analytic continuation in j; this is the standard procedure for

computing correlation functions in string theory on AdS3, and we expect it to be valid

more generally. Note that the worldsheet does not in general factorize into decoupled left

and right moving sectors due to the RR fields. In addition, it does not necessarily split

into a sum of two decoupled conformal field theories associated to AdS and to W (again

due to the RR fields and possible fibration).
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For normalizable vertex operators with j1, j2 ∈ C, the most general form of the world-

sheet OPE is, as z → 0,

O1(~x; z)O2(0; 0) =
∑

h

∫

C

dj

∫

ddx′F (z; ~x, ~x′; ji, j; hi, h)Oj,h(~x′; 0) + descendants, (2.7)

where F is related to the 2-point and 3-point functions on the worldsheet. For other values

of j1 and j2, which are relevant for the correlators of space-time CFT operators that we

are interested in, the formula (2.7) needs to be analytically continued in j1 and j2; this

continuation yields additional discrete contributions from poles of F which we will discuss

later, but otherwise it preserves the form of (2.7). We assume that the function F is

analytic in the j’s except at these poles; this is true in all known examples, and we expect

it to always be true.

Conformal invariance fixes completely the z and x dependence of F . This results in

(ignoring the worldsheet descendants and denoting |y| =
√

~y · ~y)

O1(~x; z)O2(0; 0) =
∑

h

∫

C

dj

∫

ddx′ |z|2(−∆(1)−∆(2)+∆(j,h))

|x|α|x′|β|x′ − x|γ F (ji, j; hi, h)Oj,h(~x′; 0), (2.8)

where the powers α, β and γ (depending on j1, j2 and j) may be fixed using the space-time

conformal invariance. Denoting ~x = |x|x̂ we can rewrite the integral as

O1(~x; z)O2(0; 0) =
∑

h

∫

C

dj
1

|x|α+β+γ

∫

ddx′ |z|2(−∆(1)−∆(2)+∆(j,h))

(|x′|/|x|)β(|x′/|x| − x̂|)γ
FOj,h(~x′; 0), (2.9)

where the arguments of F are suppressed. Changing variables to the dimensionless ratio

~y = ~x′/|x| we obtain

O1(~x; z)O2(0; 0) = |z|−2∆(1)−2∆(2)
∑

h

∫

C

dj
|z|2∆(j,h)F

|x|α+β+γ−d

∫

ddy
1

|y|β |~y − x̂|γ Oj,h(~y|x|; 0).

(2.10)

Since we are interested in the small |x| limit and we are ignoring the subleading contribu-

tions from space-time descendants, we can expand the last operator for small x and keep

only the first term in its Taylor expansion,

O1(~x; z)O2(0; 0) =
∑

h

∫

C

dj
|z|−2∆(1)−2∆(2)

|x|α+β+γ−d
|z|2∆(j,h)FOj,h(0; 0)

∫

ddy
1

|y|β |~y − x̂|γ . (2.11)

The final integral is now simply a number (depending on the j’s but independent of x̂);

the same number appears in the relation of F to the 3-point function which appears in the

space-time OPE. Next, acting with a space-time dilation on (2.8) gives

α + β + γ − d = 2j1 + 2j2 − 2j, (2.12)

while the fact that the two operators whose OPE we are interested in are physical operators

leads to

−∆(1) − ∆(2) = −2. (2.13)
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Using these results we obtain the final form of the OPE in the limit we are interested in,

O1(~x; z)O2(0; 0) =
∑

h

∫

C

dj
|z|−2

|x|2j1+2j2−2j
|z|2∆(j,h)−2FOj,h(0; 0)

∫

ddy
1

|y|β |~y − x̂|γ . (2.14)

This can be plugged back into our general n-point function (2.3), giving

I ≡
∫

d2z 〈O1(~x; z, z̄)c̄cO2(0; 0)X〉

=
∑

h

∫

d2z

∫

C

dj
|z|−2

|x|2j1+2j2−2j
|z|2∆(j,h)−2F 〈c̄cOj,h(0; 0)X〉

∫

ddy
1

|y|β |~y − x̂|γ

=
2π

|x|2j1+2j2

∑

h

∫

d ln |z|
∫

C

dj|z|2∆(j,h)−2|x|2jF 〈c̄cOj,h(0; 0)X〉
∫

ddy
1

|y|β |~y − x̂|γ . (2.15)

The expression above is not exact, but it accounts for the leading contribution to the

z integral from the OPE region (in space-time and on the worldsheet). Since all the

contributions from Virasoro descendants have been dropped, this is a good approximation

of the z integral in some small region around z = 0, say |z| < ǫ.

We will now argue that in the space-time OPE limit of |x| → 0, the double integral

in (2.15) is dominated (for each value of h) by a saddle point which reproduces the “single-

trace” terms in the space-time OPE. To see this more easily, we rewrite (2.15) as

I = |x|−2j1−2j2
∑

h

∫

d ln |z|
∫

C

dj|z|2(∆(j,h)−1)|x|2jB(ji, hi; j, h), (2.16)

where B stands for the product of all the factors which are independent of x and z: 2πF ,

the integral over y, and the (n − 1)-point correlator of the worldsheet theory. In the limit

of small |x|, the integral over j (for each h) has a saddle point at j = j0 such that

∂j∆(j, h)|j=j0 = − ln |x|
ln |z| . (2.17)

We will see below that for the dominant values of z the saddle point (2.17) has j0 ≥ d/4.

This is generally off the integration contour, but we expect the integrand to be an analytic

function of j (with specific poles), so we can shift the integration contour C in the direction

of the positive real axis so that it intersects the real axis at j0 (see figure 2).6 The saddle

point is then dominant if

ln |z| · ∂2
j ∆(j, h)|j=j0 ≫ 0. (2.18)

We will see that the dominant contributions come from the region of small z where this

is arbitrarily large (in the x → 0 limit), so that the saddle point approximation is justified

6The function B has various poles, and we may get some discrete contributions when we cross them

as we move the contour. We will analyze these in the next section. Our assumption that ∆ → +∞ as

|Im(j)| → +∞ for fixed Re(j) implies that the integral over finite horizontal lines at infinity vanishes (This

is needed to apply the Cauchy theorem.).

– 8 –
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Im(j)

d/4

d/4 + is j0 + is

j0 Re(j)

Figure 2: We can shift the contour from d/4 + is to j0 + is since the integrand is meromorphic

(Poles crossed as a result of this shift are analyzed in §3.). The saddle point is on the real axis and

is denoted by the bold circle at j = j0.

in this limit (using our assumption that ∂2
j ∆ < 0). Performing the j integral along this

new contour at leading order in the saddle point approximation we obtain

I = i
√

π|x|−2j1−2j2
∑

h

∫

d ln |z|
√

ln |z|∂2
j ∆|j0

|x|2j0e2 ln |z|(∆(j0,h)−1)B(ji, hi; j0, h). (2.19)

This is still a complicated integral since j0 generally depends in an intricate way on ln |z|
(through (2.17)). We can make progress by using the saddle point method again for the

integral in (2.19). But first, it is convenient to change variables from ln |z| to the ratio

w ≡ ln |z|/ ln |x|. The integral becomes

I = −i
√

π|x|−2j1−2j2
∑

h

∫

√

− ln |x|dw
√

−w∂2
j ∆|j0

|x|2j0e2 ln |x|w(∆(j0,h)−1)B(ji, hi; j0, h), (2.20)

where the overall minus sign is because of the change in the lower and upper limits of the

integral. Up to an overall factor of 2, the exponent in the integral is

ln |x| [w(∆(j0, h) − 1) + j0] . (2.21)

The first derivative with respect to w gives, upon using (2.17),

ln |x| ∂

∂w
(w∆(j0, h) − w + j0) = ln |x|(∆(j0, h) − 1). (2.22)

– 9 –
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Hence, the location of the saddle point in the integral over w (or z) is determined by the

solution of the equation

∆(j0, h) = 1. (2.23)

This is precisely the condition for a non-normalizable physical vertex operator which would

map to a “single-trace” operator which can appear in the space-time OPE; so we see that

the leading contribution in the OPE limit can be associated with such an operator, as we

expect. We will verify below that the coefficient also agrees with our expectations. In any

stable background the solutions to this equation obey j0 ≥ d/4.7 Equation (2.17) implies

that as x → 0, the saddle point is at a value of z which also goes to zero (with fixed

ln |x|/ ln |z|), but it remains at a fixed value of w in this limit.

We still have to verify that the saddle has the correct sign of its second derivative and

that it is dominant. The second derivative of the exponent with respect to w is

ln |x| ∂2

∂w2
(w∆(j0, h) − w + j0) = − ln |x|

w

∂j0

∂w
. (2.24)

The implicit function theorem implies that

− ln |x|
w

∂j0

∂w
= − ln |x|

w3

(

∂2∆

∂j2

∣

∣

∣

∣

j0

)−1

= ln |x|(∂j∆|j0)3
∂2

j ∆|j0
. (2.25)

We see that with the same assumption we needed above,

∂2
j ∆|j=j0 < 0, (2.26)

(assuming also ∂j∆j=j0 < 0 which is required for the consistency of our computation) the

saddle point is always dominant in the OPE limit x → 0, since the second derivative is

proportional to ln |x|.
Now, we drop again all the subleading corrections, and compute the integral (2.20) in

the saddle point approximation. The expansion up to quadratic fluctuations around the

saddle point w = w0 gives

I = −i
√

π|x|−2j1−2j2
∑

h

∫

√

− ln |x|dw
√

−w0∂2
j ∆|j0

|x|2j0e
2 ln |x|

(∂j∆|j0
)3

2∂2
j
∆|j0

(w−w0)2

B(ji, hi; j0, h), (2.27)

where j0 is now evaluated at the saddle point (2.23) so it no longer depends on w; the

integral is Gaussian. It is straightforward to compute it and to obtain the final result for

the OPE limit of the n-point function (2.15),

I = −iπ
∑

h

|x|2j0−2j1−2j2

∂j∆(j, h)|j=j0

B(ji, hi; j0, h), (2.28)

using the saddle point relations when necessary. Note that the saddle point is well inside

the region where we trust the various OPE expansions we performed. j0 is such that

7There is another solution to (2.23) with j0 ≤ d/4, which is not relevant for our discussion since it does

not give any solutions to (2.17).
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∆(j0, h) = 1, and the x-dependence of (2.28) is exactly what we expect for a “single-trace”

operator of dimension 2j0 in the space-time OPE.

From the space-time point of view, we expect the result to equal what we get by

plugging (2.2) into the space-time n-point function. This gives the space-time (n−1)-point

function, times the space-time OPE coefficient from (2.2), which is equal to the space-time

3-point function divided by the 2-point function of Ôj0 . And indeed, the function B includes

in its definition above precisely the (integrated) worldsheet (n − 1)-point function, times

the 3-point function divided by the 2-point function (appearing in the worldsheet OPE).

The denominator ∂j∆|j0 is a puzzling feature at first sight, since it is not clear where it

comes from in the space-time OPE analysis. It arises from the need to integrate over the

conformal group on the worldsheet when comparing two-point functions on the worldsheet

to two-point functions in space-time [17]. The j-independent prefactor (−iπ) is accounted

for in the same way. Note that exactly the same combination of “extra factors” appears

also in the analysis [3] of NS-NS string theory on AdS3, and its relation to the integral

over the subgroup of the conformal group which leaves two insertions fixed was explained

there.

Thus, after carefully matching the space-time and worldsheet results, we see that (2.28)

is precisely the expression we would expect for the space-time OPE contributions from

“single-trace” operators. Since we got the expression (2.28) from the leading saddle point

approximation, it is natural to ask what type of corrections, if any, the full integral over

the OPE region contributes. This will be analyzed in section 2.3.

It is useful to write the explicit formulae for the saddle point in the special cases where

the spectrum of primaries on the worldsheet is known. In the case of NS-NS AdS3 (2.5)

we obtain using our saddle point formulae (2.17), (2.23), the elegant relation

ln |z| =
k − 2

2j0 − 1
ln |x|. (2.29)

When combined with the on-shell relation, this can also be written as

ln |z| = ln |x| k − 2
√

4(k − 2)(h0 − 1) + 1
. (2.30)

The case of weakly curved AdSd+1 ×W backgrounds has a similar structure of worldsheet

dimensions to the case of NS-NS AdS3, which results in similar formulae for the saddle

point location. Note that in both cases (2.26) is satisfied, so the existence of the saddle

point is guaranteed. Moreover, the saddle point is always at real positive j0 ≥ d/4, which

is consistent with the unitarity of the space-time CFT.

Note that our saddle point is really a saddle circle in the integral over z. We expect

the relevant terms in the worldsheet OPE to be independent of the angle in the z plane,

since the dominant operators which are relevant for the space-time OPE are necessarily

level-matched operators with the same left-moving and right-moving scaling dimensions.

Of course, this does not imply that the correlation functions on the worldsheet will be inde-

pendent of the angle in the z plane; these could have an arbitrary dependence on the angle

(even in the small z and small x limits), coming from contributions to the worldsheet OPE
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from operators with different left-moving and right-moving scaling dimensions. However,

all these contributions vanish upon integration over the phase of z, which is why we could

ignore them in our analysis (even though they can give important contributions to the

precise form of the unintegrated worldsheet correlation functions in the OPE limit). The

integral over z is only sensitive to the angle-independent terms in the Fourier decomposition

of the correlation functions, so we lose all the information about the angular dependence.

2.3 The absence of corrections to the saddle point

From the point of view of the space-time OPE, one can argue that all the perturbative

corrections coming from the expansion around the saddle point must vanish. The reason

for this is that the second derivatives around the saddle point are proportional to ln(|x|),
so any corrections would be powers of ln(|x|). However, such corrections (for “single-trace”

operators) are inconsistent with the space-time OPE, which should only include powers

of |x| (Logarithms can appear when expanding the space-time OPE in some perturbation

expansion, but this is not the case in our computation.).

Let us verify that all these corrections indeed conspire to cancel. We will verify this

directly below, but first we will use a simpler method. Our starting point is the inte-

gral (2.16)

|x|2j1+2j2I =
∑

h

∫

d ln (|z|)
∫

C

dje2 ln(|z|)(∆(j,h)−1)+2 ln(|x|)jB(ji, hi; j, h). (2.31)

This integral converges (at least in the small |z| region that we are interested in) in all

stable backgrounds, since in such backgrounds all operators obey that ∆(j0, h) = 1 for

some j0 ≥ d/4 [10], implying that ∆(j, h) ≥ 1 on the contour C.8 Consequently, we can

take a different path from the one we took in our previous analysis, and perform the integral

over ln(|z|) first, since it is a trivial integral. Assuming that the integral is over the region

(−∞, ln |ǫ|) for some ǫ with |ǫ| < 1, we obtain

|x|2j1+2j2I =
1

2

∑

h

∫

C

dj
|ǫ|2∆(j,h)−2

∆(j, h) − 1
|x|2jB(ji, hi; j, h). (2.32)

We can now try to compute this integral by the saddle point method, as in the previous

subsection. The integral has a saddle point at j = j1 defined by

∂j∆(j, h)|j=j1 = − ln |x|
ln |ǫ| . (2.33)

Using our assumption that ∂j∆(j, h) is monotonically decreasing along the real axis, and

goes to minus infinity for large positive j, we find that as x → 0, j1 → ∞. However,

the integrand of (2.32) has a pole at j = j0 defined (as in the previous subsection) by

∆(j0, h) = 1, and in the x → 0 limit we have that j1 ≫ j0. Thus, as we shift the

integral (2.32) parallel to the real axis from the contour C to the contour C ′ given by j1+is

8It does not converge in unstable backgrounds, such as bosonic string theory on AdS3. For the special

case of j0 = d
4
, the integral does not formally converge, but all our statements are true for this case as well.
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for the saddle point evaluation, we pick up a contribution from this pole (Generically this

is a simple pole since B will not have a pole at the same place.). Using the Cauchy theorem

we then obtain that (2.32) is equal to

1

2

∑

h

∫

C′

dj
|ǫ|2∆(j,h)−2

∆(j, h) − 1
|x|2jB(ji, hi; j, h) − iπ

∑

h

|x|2j0

∂j∆(j, h)|j0
B(ji, hi; j0, h), (2.34)

ignoring possible additional discrete contributions coming from poles of B which are crossed

as the contour is moved (These will be discussed in the next section.).

Note that the second term of (2.34) is exactly the expression (2.28) we obtained in

the previous section in the saddle point approximation. On the other hand, the first term

may be reliably evaluated by the saddle point method, and it goes as |x|2j1 as x → 0.

Since j1 → ∞ in the same limit, this term does not contribute to the OPE expansion

(and in any case, since it has explicit ǫ dependence, we expect it to cancel in the full

computation). This establishes that the leading order result from the saddle point method

for the integral (2.16), which we used in the previous subsection, is exact, and does not

obtain any corrections going as powers of ln(|x|). A very similar method was used to

evaluate the OPE in [3]. The disadvantage of treating the integral as we have done in this

subsection is obvious: one loses the information about the double saddle point we discussed

in the previous section, and about having a dominant value of |z| in the computation (In

particular, the interesting relations (2.29), (2.30) are no longer visible.).9 However, the

final result is the same.

We can also verify directly that there are no corrections to the saddle point. After the

change of variables to w = ln(|z|)/ ln(|x|), the integral is proportional to

ln |x|
∑

h

∫

dw

∫

C

dje2 ln |x|(w∆(j,h)−w+j)B(ji, hi; j, h). (2.35)

Expanding this systematically around the saddle point and diagonalizing the quadratic

part in the exponent, after the dust settles, one encounters integrals of the form
∫

ds

∫

dte−s2−t2(s + it)ntm, (2.36)

with n > m. Such integrals vanish, as can be seen by using the SO(2) symmetry in the s, t

plane. The domain of integration is not precisely SO(2) invariant, but the non-invariant

contributions are far from the saddle point and vanish rapidly as x → 0, as in the previous

computation. In this way, one can directly see that the saddle point receives no corrections

which are inconsistent with the space-time OPE.

3. Discrete contributions

In this section we will analyze the additional discrete contributions to the computations

above which come from poles in the integrand (2.16) as a function of j. Such contributions

9The fact that the saddle point disappears when we change the order of integration is possible because

the saddle point is away from the original integration contour, so it does not have to appear in both orders

of integration even though the original integral converges. Indeed, when we shift the contour to j0 + is so

that the saddle point is on the contour of integration, the integrals no longer commute.

– 13 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
4

can arise both when the poles cross the integration contour during the analytic continuation

in j1 and j2, and when they cross the contour as we shift it from j = d/4+ is to j = j0 + is.

In the special case of AdS3 with NS-NS flux, the pole structure of B was analyzed in [3]. It

was found that there are two relevant families of poles in the structure function B, which

appear at

j = j1 + j2 + n , n ∈ {0, 1, 2, · · · }, (3.1)

and at

j = |j1 − j2| − n , n ∈ {0, 1, 2, · · · }. (3.2)

Recall that B includes a worldsheet 3-point function (which is the same as the space-time

3-point function) of operators with dimensions 2j, 2j1 and 2j2. In the case (3.1) the pole

is related to the mixing of (a descendant of) the product of the latter two operators with

Ôj , and the case (3.2) is related to this by a permutation of the operators. Thus, we

expect both types of poles to be completely general, and to appear in any example of the

AdSd+1/CFTd correspondence.

From the point of view of our computation of the space-time OPE, the naive interpre-

tation of a contribution from the first family of poles (3.1) is as a “double-trace” operator

of dimension 2j (related to Ôj1Ôj2) appearing in the OPE. On the other hand, the second

family of poles (3.2) has no straightforward interpretation in space-time since, generically,

there are no physical space-time operators with the appropriate dimensions 2j. We will first

discuss the family of poles (3.1), and later turn to (3.2) which behave a little differently.

Let h be fixed and consider the contribution coming from crossing a pole of the

form (3.1). These poles are not crossed during the analytic continuation in j1, j2, but

they may be crossed when we shift our contour. We begin with our general result for the

form of the contribution in the OPE region

I1 = |x|−2j1−2j2

∫ ln |ǫ|

−∞
d ln |z|

∫

C

dj|z|2(∆(j,h)−1)|x|2jB(ji, hi; j, h), (3.3)

with C = d
4 + is. As in the previous section, one way to compute this is to first perform

the z integral, leading to

I1 = |x|−2j1−2j2

∫

C

dj
|ǫ|2(∆(j,h)−1)

2(∆(j, h) − 1)
|x|2jB(ji, hi; j, h). (3.4)

For simplicity, we assume that the poles of the series (3.1) are not coincident with physical

operators satisfying ∆ = 1. In this case, the integrand of (3.4) has isolated single poles.

Moreover, the integrand has a saddle point with ∂j∆ ∼ − ln |x|/ ln |ǫ| which is very far

away on the positive j axis, and does not contribute to the OPE limit. Hence, we are able

to evaluate the integral by a contour argument, with the result

I1=−iπ|x|−2j1−2j2

(

|x|2j0

∂j∆(j, h)|j0
B(ji, hi; j0, h)

+
∑

n

|ǫ|2(∆(j1+j2+n,h)−1)

∆(j1 + j2 + n, h) − 1
|x|2(j1+j2+n)Resj=j1+j2+n[B(ji, hi; j, h)]

)

.(3.5)
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Note that the first term is our usual on-shell contribution, and the sum over n is over

the contributions from poles of the series (3.1). To understand how to deal with these

contributions, we can consider the opposite order of integration, where we first perform

the j integral in (3.3).

The integrand in this case has a simple pole at j = j1+j2+n coming from B(ji, hi; j, h).

In addition, there is a saddle point of the j integrand at ∂j∆(j, h) = − ln |x|
ln |z| . Denote the

solution of this equation by j0

(

ln |x|
ln |z|

)

. Since it is a monotonically increasing function, if we

shift the contour C to the contour j0

(

ln |x|
ln |z|

)

+is, we collect the poles of B only if |z| > |z|cr
where

∂j∆(j, h)|j=j1+j2+n = − ln |x|
ln(|z|cr)

.

Thus, the discrete contribution takes the form

∫ ln |ǫ|

ln |z|cr

d ln |z|e2 ln |z|(∆(j1+j2+n,h)−1)+2 ln |x|(j1+j2+n)Resj=j1+j2+n[B(ji, hi; j, h)]. (3.6)

As long as |z| satisfies |z| > |z|cr and is away from |z|cr this is indeed reliable, and the

saddle point evaluation of the j integral is legal. However, when |z| is sufficiently close

to |z|cr the saddle point evaluation of the j integral breaks down, and one can verify that

from this region we obtain a contribution like the one in (3.6) but completing the region

of integration to (−∞, ln |ǫ|). Thus, in this order of integration the final result takes the

following (equivalent to (3.5)) form10

I1=−iπ|x|−2j1−2j2

(

|x|2j0

∂j∆(j, h)|j0
B(ji, hi; j0, h)

+2
∑

n

∫ ln |ǫ|

−∞
d ln |z|e2 ln |z|(∆(j1+j2+n,h)−1)+2 ln |x|(j1+j2+n)Resj=j1+j2+n[B(ji, hi; j, h)]

)

.

(3.7)

In this way of writing the discrete contributions to I1, it is clear that they are analogous

to a well known behavior in the OPE limit of string theory in flat space, so let us recall

some basic features of it. Consider the S-matrix for four tachyons

〈eik1Xeik2Xeik3Xeik4X〉, (3.8)

with all tachyons on-shell. Suppose we choose a gauge in which the vertices are localized

at z, 0, 1,∞ (in this order), and consider the contributions from the OPE limit z → 0. In

this limit the result is dominated by the leading term in the OPE which takes the form

eik1X(z)eik2X(0) ∼ |z|α′k1·k2ei(k1+k2)X(0) + · · · . (3.9)

10Note that, in particular, (2.19) is not reliable near poles of the structure function B since there is no

faithful saddle point of the j integral in this regime. Thus, (2.19) is only correct near the saddle point, and

the other regions actually combine to give the more general result (3.7).
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Thus, the contribution to the correlation function from the small z region is

2π

∫

|z|<ǫ

d|z||z|α′k1·k2+1〈ei(k1+k2)X(0)eik3X(1)eik4X(∞)〉. (3.10)

There are two possible cases; one is that ei(k1+k2)X(0) is off-shell and the other case is that

it is on-shell. Note also that

α′k1 · k2 + 1 =
α′

2
(k1 + k2)

2 − 3. (3.11)

The integral is convergent when

α′

2
(k1 + k2)

2 − 3 > −1 ⇒ α′

2
(k1 + k2)

2 − 2 > 0. (3.12)

The intermediate state is on-shell exactly when the equality α′

2 (k1+k2)
2−2 = 0 is satisfied.

There is a pole in the space-time scattering amplitude when the intermediate state is on-

shell. For other values, the contribution to the space-time amplitude is obviously small,

and goes to zero when ǫ → 0. This is correct even though there is divergence in the integral,

since we can use an analytic continuation which states that as a distribution

Resj=−2[|z|j ] = 2πδ2(z, z̄). (3.13)

This results in a pole in the space-time scattering amplitudes when the intermediate state

is on-shell, and when the intermediate state is off-shell there is no contribution to the

space-time scattering amplitude from the small |z| region.

The discrete contributions in AdS backgrounds coming from (3.1) are analogous to

those in flat space, and the structure of divergences is very similar. The generic situation

is that the poles (3.1) are not coincident with j0, so the form of the contribution is in-

deed (3.7).11 Using the same logic as in the previous paragraphs, we conclude that there

are no contributions from the poles (3.1) to the space-time OPE from the |z| < |ǫ| region.

Even though naively we might have thought that contributions from (3.1) would be related

to “double-trace” terms in the space-time OPE, we see that this does not generically hap-

pen (in the worldsheet OPE region), in agreement with the general expectation that such

contributions should not arise locally on the worldsheet.

Let us now discuss the other family of poles, (3.2). The basic difference from (3.1)

is that during the analytic continuation of j1 and j2 some of them may cross the contour

11There is an interesting special case where some discrete contribution of the type (3.1) equals j0, so

that we have a double pole in the integral over j (if we first do the z integral). This case should be

treated separately since both terms in (3.4) or in (3.7) are infinite. However, their sum is finite, and can

easily be evaluated from the double pole. The result contains a ln(|x|) factor, which may seem problematic

from the point of view of an OPE in a conformal theory. However, in this case there is a “double-trace”

operator of dimension 2j0 (in the limit gs → 0) appearing in the OPE. This “double-trace” operator can

have an anomalous dimension (of order g2
s), and this can give rise to a logarithm in the leading order OPE

computation, as in [5] (it is a subleading correction to the double sphere diagram which usually gives the

“double-trace” contribution to the OPE, so it is of the same order as the “single-trace” contributions).

Contributions to the coefficient of this logarithm may arise also from the |z| > |ǫ| region of the worldsheet

theory, which may or may not cancel the contributions from the worldsheet OPE region.
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C (The ones who do not cross C are not crossed also later, so they do not contribute

anything.). This adds to (3.3) a discrete contribution (which is just an integral over z).

The evaluation of (3.3) proceeds as before. For convenience, we analyze this by doing the

z integral first. The single pole at j = |j1 − j2| − n contributes exactly the opposite of the

contribution from crossing the contour C. Hence, this family of poles does not give any

contributions to I1.
12

We can split the complete integrated n-point worldsheet amplitude
∫

d2z 〈O1(x; z, z̄)c̄cO2(0; 0)X〉 (3.14)

to a contribution I1 from |z| < |ǫ| which we analyzed above and a contribution I2 from

|z| > |ǫ| which is not known analytically except for some very special cases. The integral I1

was argued, generically, not to have any finite contributions to the space-time OPE except

for the “single-trace” contributions coming from the saddle point,

I1 ≃ −iπ
∑

h

|x|2j0−2j1−2j2

∂j∆(j, h)|j0
B(ji, hi; j0, h). (3.15)

The integral I2 is not known in general, but in the special case of 4-point functions on

AdS3 [3] it was argued that the integrand in this region could also be written as an integral

of j over the contour C, and it was convenient to shift this integral to a different contour

C ′′ = k−1
2 + is. The contribution from the integral over this contour was shown to lead to

contributions to the space-time OPE from intermediate states which were identified with

winding number w = 1 strings. On the way, some poles of the integrand of I2 were crossed,

and these poles were claimed to be associated to “double-trace” operators in the space-time

OPE. It would be interesting to understand more generally how to see the “double-trace”

contributions to the space-time OPE.

4. A comparison to Gopakumar’s proposed dual of free gauge theories

The results described in the previous sections may have various applications. Here we

discuss one application, which is a test of the proposal of R. Gopakumar for the string dual

of free large N gauge theories [9].13 Gopakumar proposed a specific string theory dual

for these theories, but it is not presented in the form of a local worldsheet theory, so we

cannot directly use our arguments from the previous sections. We wish to check whether in

the space-time OPE limit, this proposed dual exhibits a dominant saddle point with ln |z|
scaling as ln |x|, as implied by our general analysis of section 2.

For planar diagrams, the prescription of [9] involves first rewriting each free field theory

Feynman diagram contributing to an n-point correlation function as an integral over the

Schwinger parameters σij of the propagators connecting the i’th and j’th operators. For

each set of propagators which connect the same two vertices with contractible color flow

12Similar arguments imply that any other poles of B also do not contribute, except perhaps when they

coincide with j0.
13For a review see [19]. This proposal can be used for perturbative gauge theories as well.
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lines we use a single Schwinger parameter.14 Then, one maps the space of these Schwinger

parameters to the “decorated moduli space” M0,n×R
n
+: the moduli space of a sphere with

n marked points, together with a positive number pi associated with each marked point.

As described in detail in [9], this mapping uses the properties of Strebel differentials. After

integrating over the pi, this procedure gives a specific worldsheet n-point correlation func-

tion associated with the original correlator, which, by construction, reproduces the correct

n-point space-time correlation function (upon integration over the worldsheet moduli).

The Schwinger representation (in position space) of a generic tree-level amplitude of

a free gauge theory (specializing to the case of a four dimensional correlation function of

single-trace operators made from adjoint scalar fields) takes the form

∫

dσ12σ
J12−1
12

∫

∏

{k,l}6={1,2}

[dσklσ
Jkl−1
kl ]e−σ12x2

12−
P

{k,l}6={1,2} σklx
2
kl , (4.1)

where Jkl are the numbers of propagators connecting the k’th and l’th vertices (separated

by a distance xkl), and the product and sum over {k, l} go over all pairs of vertices with

Jkl ≥ 1. We will be interested in the limit x12 → 0 where the first two operators come

together; we assume J12 > 0 since otherwise no single-trace operators contribute to this

OPE limit. Defining new variables Tkl ≡ σkl/σ12 for {k, l} 6= {1, 2}, we can integrate over

σ12 which plays the role of the overall scale. We remain with an integral of the form (up

to a constant)
∫

R
m
+

∏

kl

dTkl

∏

kl T
Jkl−1
kl

(x2
12 +

∑

kl Tklx
2
kl)

M
, (4.2)

where m is the number of lines in the reduced Feynman diagram minus one (for a generic

n-point planar diagram, m = 3n − 7), and M ≡ J12 +
∑

kl Jkl. Next, we transform to

spherical coordinates in the space of {Tkl}. The integral over the radial coordinate r in

this space depends only on the ratio r/x2
12, up to an overall factor (independent of r).

Hence, the main contribution to the integral (which is non-negative and convergent) in the

x12 → 0 limit comes from the region where r is of order x2
12. However, there is no dominant

saddle point in this region (say, working in the variable r/x2
12).

This reasoning establishes that the integral is dominated by a region in which the ratio

of the Schwinger parameter σ12 to the other σkl’s scales as 1/x2
12. Next, we should study

how this region maps into the moduli space of Riemann surfaces by the mapping of [9].

This was studied in [9] (and later corroborated in explicit examples15 [19 – 21]), where it

was shown that this region maps to the region of z → 0 (where z is the distance between

the worldsheet positions of the first two vertex operators), with

|z| ∝ r. (4.3)

14The original prescription of [9] involved Schwinger parameters in momentum space, but it will be

more convenient for us to use Schwinger parameters in position space. These arise by replacing the four

dimensional scalar propagator 1/|x|2 by
R ∞

0
dσe−σ|x|2 , and they are the inverses of the momentum-space

Schwinger parameters. When joining adjacent propagators together, the σ’s simply add together.
15One can also prove this result in general with less assumptions than were used in [9].

– 18 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
4

Combining this with the scaling relation r/x2
12 ∼ 1, we find that the dominant contribution

to the worldsheet correlation functions in the OPE limit comes from a region in which [9]

|z| ∝ x2
12. (4.4)

This is somewhat similar to the results of section 2, which indeed predict such power

law scaling relations. Assuming that the origin of this scaling is similar to that in the

discussion of section 2, we can rewrite (4.4) as

ln(|z|)
ln(|x12|)

= 2, (4.5)

and find using (2.17) that the worldsheet scaling dimensions of the corresponding world-

sheet theory must obey

∂j∆(j, h)|j=j0 = −1

2
, (4.6)

for any operator (which becomes physical at j = j0).

However, such a conclusion is too naive since the detailed behavior of the integral (4.2)

(interpreted as an integral over |z| instead of over r) is quite different from the behavior we

found in section 2. In particular, there is not really a saddle point in this integral, while

in section 2 we proved that the existence of a continuum of normalizable vertex operators,

with a well-behaved function ∆(j, h) determining their worldsheet scaling dimensions, leads

to a dominant saddle point.16

Thus, the formalism of [9] leads to results which are similar, but not identical, to

our general expectations from section 2. This suggests that this formalism may involve a

somewhat singular worldsheet theory, as expected on general grounds for the dual of free

gauge theories, and as suggested by various other properties of this formalism [19]. Some

possibilities are:

• The integral over j may not have a saddle point in the limit of free gauge theories;

for instance, the function ∆(j, h) may not even be analytic in this limit. Even with

non-analytic functions we have been unable to obtain integrands of the form (4.2),

but we cannot prove that this is impossible.

• There may not be a continuum of normalizable vertex operators on the worldsheet in

the limit of free gauge theories. Note that our arguments for the existence and form

of such a continuum involved using the space-time conformal symmetry, while this

symmetry is not [19] realized locally in the formalism of [9]. It would be interesting

to find arguments for or against such a continuum in the string dual of free gauge

theories.

• The formalism of [9] may not give rise to standard local worldsheet theories as we

assumed in section 2.

16In fact, the analysis of the saddle point in the integral over j in section 2 implies that the integrand of

the integral over |z| in the OPE limit z, x → 0, must take the form |x|
f

“

ln |x|
ln |z|

”

× subleading. This is not

obeyed by (4.2).
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